

#### Descrizione

Gruppo di misura dell'energia termica compatto, composto da misuratore volumetrico unigetto, coppia di sonde a termoresistenza e centralina di calcolo con display.

#### Caratteristiche tecniche

- Certificazione MID 2014/32/UE (MI-004);
- alimentazione batteria vita utile 6+1 anni (Mbus) 10+1 (W-Mbus/OMS);
- adequato per regime riscaldamento e refrigerazione +2+90°C;
- installazione orizzontale e verticale (tubo di ritorno);
- sonda di mandata Pt1000 con installazione ad immersione diretta;
- ingressi impulsivi ausiliari 10 l/imp. per misuratori volumetrici ACS/AFS;
- datalogger 60 mesi.

#### Protocolli disponibili:

- Mbus conforme EN1434-3
- W-Mbus conforme EN13757-4 e OMS



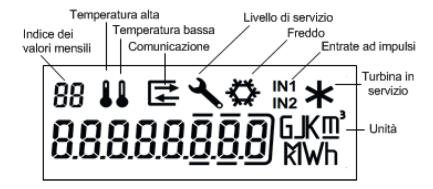
#### Codici selezione volumetrica

| Codice       | DN | Qp [m³/h] | Filettatura<br>corpo<br>[pollici] | Filettatura<br>bocchettone<br>[pollici] | Comunicazione           |
|--------------|----|-----------|-----------------------------------|-----------------------------------------|-------------------------|
| CEM-S1506P32 | 15 | 0,6       | G 3/4"                            | G 1/2"                                  | Mbus + 2 Ingressi       |
| CEM-S1515P32 | 15 | 1,5       | G 3/4"                            | G 1/2"                                  | Mbus + 2 Ingressi       |
| CEM-S2025P32 | 20 | 2,5       | G 1"                              | G 3/4"                                  | Mbus + 2 Ingressi       |
| CEM-S1515W32 | 15 | 0,6       | G 3/4"                            | G 1/2"                                  | W-Mbus/OMS + 2 Ingressi |
| CEM-S1515W32 | 15 | 1,5       | G 3/4"                            | G 1/2"                                  | W-Mbus/OMS + 2 Ingressi |
| CEM-S2025W32 | 20 | 2,5       | G 1"                              | G 3/4"                                  | W-Mbus/OMS + 2 Ingressi |

#### Funzioni

- Rilevamento del consumo di energia e del volume in applicazioni di riscaldamento o raffreddamento.
- La configurazione delle due entrate può essere fatta attraverso l'interfaccia ottica o via M-Bus oppure utilizzando il software Tools Supercom.
- Visualizzazione dei valori di consumo secondo la configurazione:
  - 18 valori mensili dell'energia calda , del volume ed energia tarifa 1 (energia fredda)
  - 18 valori mensili per ogni contatore, 1 e 2 (entrata ad impulsi)
  - Valori al giorno di rilievo.
- Visualizzazione dei dati di funzionamento incluso il monitoraggio degli errori.

#### Calcolatore


Il calcolatore ha un ampio display LCD con 8 cifre e si gira su 360°. Esso può essere separato dalla volumetrica per un'installazione a distanza. Un cavo di 0,6 metri lo collega alla volumetrica.

L'indice di protezione IP65 del calcolatore assicura una protezione della sua parte interna contro getti d'acqua e polvere.



## Display

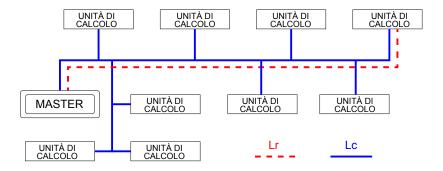
L'ampio display LCD del CEM-S è stato concepito per essere letto facilmente dall'utente.



#### Centralizzazione dati

L'elettronica del Misuratore di Energia Termica prevede un protocollo di comunicazione come ad esempio il protocollo M-Bus. L'architettura della rete Bus prevede una unità master (concentratore di dati) fino a 250 nodi. La velocità standard di connessione 2400 baud e permette di trasmettere:

- Consumi di energia in riscaldamento e refrigerazione
- Consumi volumetrici misurati dai contatori divisionali dedicati alla rilevazione dei consumi di acqua sanitaria
- Dati tecnici quali temperature del fluido, stato del contatore, ecc. Il protocollo di comunicazione è standard e permette di integrare nella stessa rete altri dispositivi (calore, energia elettrica, gas).


#### Cavo

La connessione cablata è un semplice cavo a due conduttori twistato e schermato tipo J-Y (St) Y 1x2x0,8 mm, con capacità mutua massima 130 nF/km.

#### Cavi consigliati

| Магса  | Tipo       | R [Ohm/km] | C [nF/km] | Codice |  |
|--------|------------|------------|-----------|--------|--|
| Belden | 1x2x0,8 mm | 21,3       | 89,2      | 8760   |  |
| Belden | 2x2x0,8 mm | 19,2       | 114,8     | 9552   |  |
| Belden | 1x2x1,3 mm | 14,8       | 75,5      | 8719   |  |

#### Dimensionamento della rete





#### Dispositivi rilevabili a 2400 baud

| Lc (m) |           | T:         |            |            |           |
|--------|-----------|------------|------------|------------|-----------|
|        | Lr: 350 m | Lr: 1000 m | Lr: 2000 m | Lr: 3000 m | Tipo cavo |
| 4000   | 250       | 84         | 30         | -          | 2x2x0,8   |
| 6500   | 250       | 84         | 30         | -          | 1x2x0,8   |
| 5000   | 250       | 250        | 135        | 82         | 1x2x1,3   |
| 6000   | 250       | 250        | 22         | -          | 1x2x1,3   |
| 10000  | 250       | 250        | -          | -          | 1x2x1,3   |
| 13000  | 250       | 130        | -          | -          | 1x2x1,3   |

Il sistema M-Bus permette di realizzare reti estese. I parametri fondamentali da considerare per la determinazione della estensione massima della rete sono:

- Lr: distanza massima dal concentratore Master al dispositivo più remoto.
- Lc: lunghezza globale della rete data dalla somma di tutti i segmenti di linea.

## Messaggi di errore

Err 1: Flusso piu grande che 1.2 x qs o errore di volumetrica.

Err 2: Temperatura misurata fuori del campo omologato o sonda danneggiata.

## / Principio di misura

Al passaggio del fluido la turbina entra in rotazione. La sua velocità di rotazione viene analizzata elettronicamente in modo magnetico per il getto singolo o induttivo per il getto multiplo coassiale.

La differenza di temperatura tra andate e ritorno è misurata dalle sonde in platino (Pt 1'000).

## Calcolo dell'energia

Il contatore registra il volume del fluido di scambio termico.

Il consumo d'energia termica, rispettivamente calda/fredda, è calcolato con la differenza tra temperatura di mandata e temperatura di ritorno, il volume registrato e il coefficiente termico.

Quest'ultimo prende in considerazione la densità, la viscosità e il calore specifico del fluido termo vettore, tutti questi variano dinamicamente con il variare della temperatura del fluido stesso.

## Energia fredda

L'energia fredda, in applicazioni miste, è memorizzata in un secondo registro. Essa sarà accumulata solo se le due condizioni seguenti sono rispettate:

- Differenza di temperatura ( $\Delta t$ ) < -0.5K
- Temperatura di mandata < 18°C</li>

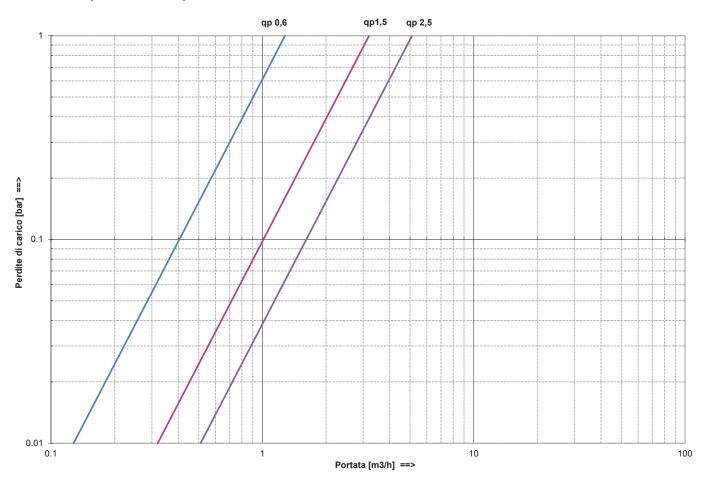
L'energia fredda ha la stessa unità fisica che l'energia calda. La potenza e la differenza di temperatura saranno visualizzate in questo caso con il segno (-). Su richiesta è possibile ordinare il CEM-S con un altro valore di soglia che i 18°C.

#### Memoria

I parametri dell'apparecchio, i valori accumulati dell'energia e del volume, dell'energia fredda, tutti i valori mensili, i valori al giorno di rilievo, i valori dei contatori aggiuntivi attraverso le entrate a impulsi 1 e 2, le ore di funzionamento e i tipi di errori sono registrati in una memoria EEPROM, dove rimangono custoditi anche in caso di mancanza di alimentazione (cambio della batteria). I dati restano memorizzati anche in caso di guasto al modulo di alimentazione.

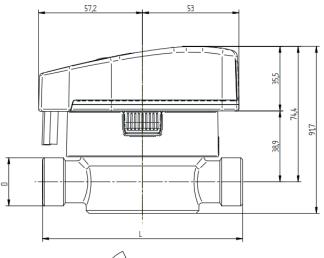
### Valori mensili

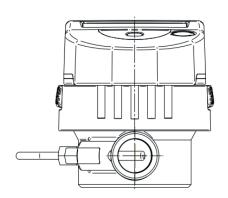
I dati mensili saranno memorizzati alla fine di ogni mese fino ad un massimo di 18 mensilità per ognuno di questi registri:

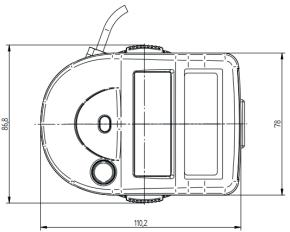

- energia
- volume
- energia Raffrescamento
- volume raffrescamento
- ingresso impulsi 1 e 2.



## Dati tecnici


| Sonda di temperatura     | <ul><li>Sonde di temperatura a 2 fili</li><li>Diametro</li><li>Lunghezza del cavo</li></ul>                                                                         | Pt1000<br>Ø5<br>1.5 m                     |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Misura della temperatura | <ul> <li>Area di temperatura Θ</li> <li>Temperatura di uso</li> <li>Risoluzione della temperatura t (display)</li> <li>Ciclo di misura della temperatura</li> </ul> | 0°110°C<br>5° 90°C<br>0.1°C<br>20 secondi |  |
| Calcolatore              | <ul><li>Meccanica</li><li>Indice di protezione</li><li>Cavo di collegamento tra misuratore e calcolatore</li></ul>                                                  | M1<br>IP65<br>0.6 m                       |  |
| Display e unità          | <ul> <li>LCD con 8 cifre</li> <li>Energia</li> <li>Volume</li> <li>Entrate ad impulsi (opzione)</li> <li>Temperatura</li> <li>Δ Temperatura</li> </ul>              |                                           |  |
| Alimentazione            | • Batteria al Lithium-Metall (≤ 1g) 3VDC                                                                                                                            |                                           |  |


## **▮** Curva di perdita di pressione






## Dimensioni volumetrica getto singolo







| Flusso nominale:      | qp | m³/h | 0,6 | 1,5 | 2,5 |
|-----------------------|----|------|-----|-----|-----|
| Diametro nominale:    | DN | mm   | 15  | 15  | 20  |
| Connessioni:          | D  | G"   | 3/4 | 3/4 | 1   |
| Lunghezza misuratore: | L  | mm   | 110 | 110 | 130 |

## Certificazioni

- Direttiva Europea MID 2014/32/UE
- Direttiva Red 2014/53/UE